통계 > 적합성 모델 > 선형 혼합 모델...
Statistics > Fit models > Linear mixed model...

Linux 사례 (MX 21)

데이터셋을 활성화시키면, '통계 > 적합성 모델 > 선형 혼합 모델...' 메뉴 기능을 사용할 수 있다. lme4 패키지의 sleepstudy 데이터셋을 이용하여 연습해보자.

sleepstudy 데이터셋을 활성화 시키자. 먼저 lme4 패키지를 호출해야 한다. 그래야 포함된 데이터셋 목록을 확인할 수 있기 때문이다. '도구 > 패키지 적재하기...' 메뉴 기능을 통하여 lme4를 적재한다. 그리고 '데이터 > 패키지에 있는 데이터 > 첨부된 패키지에서 데이터셋 읽기...' 메뉴 기능을 선택하고, 다음 화면에서 lme4 패키지에 포함된 데이터셋들 중에서 sleepstudy를 찾아서 선택한다. 그러면, R Commander 상단의 <활성 데이터셋 없음> 버튼이 'sleepstudy'로 바뀐다.

https://rcmdr.tistory.com/212

sleepstudy 데이터셋

lme4::sleepstudy data(sleepstudy, package="lme4") '데이터 > 패키지에 있는 데이터 > 첨부된 패키지에서 데이터셋 읽기...' 메뉴 기능을 선택하면 하위 선택 창으로 이동한다. 아래와 같이 lme4 패키지를 선택..

rcmdr.kr


sleepstudy 데이터셋을 이용하여 LMM.1 모형을 만든다. '통계 > 적합성 모델 > 선형 혼합 모델...' 메뉴 기능을 이용할 수 있다.

LMM.1 <- lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy, REML=TRUE)
Linux 사례 (MX 21)
Linux 사례 (MX 21)

REML(Restricted maximum likelihood, 제한적 최대우도) 대신 ML(Maximum likelihood, 최대우도) 인자를 사용해보자.

LMM.2 <- lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy, REML=FALSE)
Linux 사례 (MX 21)
Linux 사례 (MX 21)


?lmer   # lmer 함수 도움말 보기

선형 혼합 모형(Linear mixed model)을 만들었다면, '모델 > 가설 검정 > 분산분석표...' 메뉴 기능을 이용할 수 있다. LMM.1을 만들었으니 가능하다.

Anova(LMM.1, type="II")
Linux 사례 (MX 21)
Linux 사례 (MX 21)

'Statistics > Fit models' 카테고리의 다른 글

7. Generalized linear mixed model...  (0) 2022.07.01
5. Ordinal regression model...  (0) 2022.06.24
4. Multinomial logit model...  (0) 2022.03.09
3. Generalized linear model...  (0) 2022.03.09
2. Linear model...  (0) 2022.03.07

lme4::sleepstudy()

data(sleepstudy, package="lme4")

'데이터 > 패키지에 있는 데이터 > 첨부된 패키지에서 데이터셋 읽기...' 메뉴 기능을 선택하면 하위 선택 창으로 이동한다. 아래와 같이 lme4 패키지를 선택하고, sleepstudy 데이터셋을 찾아 선택한다.

Linux 사례 (MX 21)

sleepstudy 데이터셋이 활성화된다. R Commander 상단의 메뉴에서 < 활성 데이터셋 없음> 이 'sleepstudy'로 바뀐다.

Linux 사례 (MX 21)

summary(sleepstudy)
str(sleepstudy)

'통계 > 요약 > 활성 데이터셋' 메뉴 기능을 통해서 sleepstudy 데이터의 요약 정보를 살펴보자. str() 함수를 이용하여 sleepstudy 데이터셋의 내부 구조를 살펴보자.

Linux 사례 (MX 21)

데이터셋의 내부는 다음과 같다:

Linux 사례 (MX 21)


sleepstudy {lme4} R Documentation

Reaction times in a sleep deprivation study

Description

The average reaction time per day for subjects in a sleep deprivation study. On day 0 the subjects had their normal amount of sleep. Starting that night they were restricted to 3 hours of sleep per night. The observations represent the average reaction time on a series of tests given each day to each subject.

Format

A data frame with 180 observations on the following 3 variables.

Reaction

Average reaction time (ms)

Days

Number of days of sleep deprivation

Subject

Subject number on which the observation was made.

Details

These data are from the study described in Belenky et al. (2003), for the sleep-deprived group and for the first 10 days of the study, up to the recovery period.

References

Gregory Belenky, Nancy J. Wesensten, David R. Thorne, Maria L. Thomas, Helen C. Sing, Daniel P. Redmond, Michael B. Russo and Thomas J. Balkin (2003) Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. Journal of Sleep Research 12, 1–12.

Examples

str(sleepstudy)
require(lattice)
xyplot(Reaction ~ Days | Subject, sleepstudy, type = c("g","p","r"),
       index = function(x,y) coef(lm(y ~ x))[1],
       xlab = "Days of sleep deprivation",
       ylab = "Average reaction time (ms)", aspect = "xy")
(fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
(fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy))

[Package lme4 version 1.1-26 Index]

'Dataset_info > sleepstudy' 카테고리의 다른 글

sleepstudy 데이터셋 예제  (0) 2022.06.25

통계 > 평균 > 일-요인 반복-측정 ANOVA/ANCOVA...

Statistics > Means > One-factor repeated-measures ANOVA/ANCOVA...

Linux 사례 (MX 21)

데이터셋을 활성화시켰다면, '통계 > 평균 > 일-요인 반복-측정 ANOVA/ANCOVA' 메뉴 기능을 사용할 수 있다. carData 패키지의  OBrienKaiser 데이터셋을 이용하여 연습해보자.

 

먼저, OBrienKaiser 데이터셋을 활성화 시키자. '데이터 > 패키지에 있는 데이터 >

첨부된 패키지에서 데이터셋 읽기...' 메뉴 기능을 선택하고, 다음 화면에서 carData 패키지에 포함된 데이터셋들 중에서 OBrienKasier를 찾아서 선택한다. 그러면, R Commander 상단의 <활성 데이터셋 없음> 버튼이 'OBrienKasier'로 바뀐다.

https://rcmdr.tistory.com/95

 

OBrienKaiser 데이터셋

carData 패키지에 있는 OBrienKaiser 데이터셋이다. carData 패키지는 Rcmdr 패키지가 호출될 때 자동으로 함께 호출되기 때문에 R Commander에서 carData 패키지에 포함된 데이터셋들을 자유롭게 호출할 수 있

rcmdr.kr

'통계 > 평균 > 일-요인 반복-측정 ANOVA/ANCOVA' 메뉴 기능을 선택하자. 아래와 같은 화면이 등장한다.

Linux 사례 (MX 21)

메뉴 창의 세부 항목을 아래와 같이 설정한다.

Linux 사례 (MX 21)

data(OBrienKaiser, package="carData")
Anova(lm(cbind(pre.1, post.1, fup.1) ~ gender *treatment, data=OBrienKaiser), 
  idata=data.frame(Phase=factor(c('pretest', 'posttest', 'followup'))), idesign = ~Phase, 
  test.statistic="Pillai")

Linux 사례 (MX 21)


'선택기능' 메뉴 창의 중간에 있는 '반복-측정 평균들'에서 '요인 반응 평균 그리기를 선택하자. 그래픽 창이 등장하며 세개의 단계 'pretest-posttest-followup'의 각 1 level에 해당하는 평균 값 그래프를 생산한다.

Linux 사례(MX 21)
Linux사례 (MX 21)

repeatedMeasuresPlot(OBrienKaiser, within=c("pre.1", "post.1", "fup.1"), within.names="Phase", 
  within.levels=list(Phase=c("pretest", "posttest", "followup")), print.tables=FALSE, plot.means=TRUE, 
  response.name="score")

만약 '개인간 요인 (없거나 하나 이상 선택)'에서 gender 와 treatment 두개를 모두 선택하고 그래프를 출력하면 아래와 같이 gender와 treatment변로 평균 그림이 생산된다.

'Statistics > Means' 카테고리의 다른 글

7. Two-factor repeated-measures ANOVA/ANCOVA  (0) 2022.06.30
5. Multi-way ANOVA...  (0) 2022.03.13
4. One-way ANOVA...  (0) 2022.03.07
3. Paired t-test...  (0) 2022.03.07
2. Independent samples t-test...  (0) 2022.03.07

+ Recent posts