3차원 산점도...

Graphs > 3D graph > 3D scatterplot

Linux 사례 (MX 21)

carData 패키지에 있는 Prestige 데이터셋을 활성화시키자. 교육연수와 연소득이 직업의 사회적 권위에 미치는 영향을 점검한다고 생각하자. <설명 변수 (두개 선택)>에 education, income을 <반응 변수 (한개 선택)>에 prestige 변수를 선택한다.

Linux 사례 (MX 21)

<선택기능> 창에서 '축(axis) 규모 보이기', '표면 그리드 선 보이기'를 선택하고, <표면 적합화 방법>에서 '평활 회귀'를 선택해본다.

Linux 사례 (MX 21)

scatter3d(prestige~education+income, data=Prestige, 
	fit="smooth", residuals=TRUE, bg="white", 
    axis.scales=TRUE, grid=TRUE, ellipsoid=FALSE)

아래 그래픽장치 창에 등장하는 3차원 산점도는 회전을 시켜서 최적의 시점(perspective)을 찾을 수 있다.

Linux 사례 (MX 21)


?scatter3d  # car 패키지의 scatter3d 도움말 보기

    if(interactive() && require(rgl) && require(mgcv)){
scatter3d(prestige ~ income + education, data=Duncan, id=list(n=3))
Sys.sleep(5) # wait 5 seconds
scatter3d(prestige ~ income + education | type, data=Duncan)
Sys.sleep(5)
scatter3d(prestige ~ income + education | type, surface=FALSE,
	ellipsoid=TRUE, revolutions=3, data=Duncan)
scatter3d(prestige ~ income + education, fit=c("linear", "additive"),
	data=Prestige)
Sys.sleep(5)
scatter3d(prestige ~ income + education | type,
    radius=(1 + women)^(1/3), data=Prestige)
	}
	## Not run: 
# drag right mouse button to identify points, click right button in open area to exit
scatter3d(prestige ~ income + education, data=Duncan, id=list(method="identify"))
scatter3d(prestige ~ income + education | type, data=Duncan, id=list(method="identify"))
    
## End(Not run)

'Graphs > 3D graph' 카테고리의 다른 글

3. Save graph to file  (0) 2022.03.07
2. Identify observations with mouse  (0) 2022.03.06

그래프 > 원 그래프...
Graphs > Pie chart...

Linux 사례 (MX 21)

carData 패키지에서 Prestige 데이터셋을 선택하여 활성화시키자. Prestige 데이터셋에는 요인형 변수가 type 하나이다. 원 그래프는 요인형 변수를 시각화할 때 사용하는 기법의 하나이다. <색깔 선택>에서 '색깔 팔레트에서'를 선택하고 <그림 이름표>에 내용을 이해하는데 효과적인 이름표와 제목을 입력한다.

Linux 사례 (MX 21)

with(Prestige, piechart(type, xlab="type (직업유형)", ylab="", 
main="1971년 캐나다 직업군의 유형 비율", col=palette()[2:4], scale="percent"))

Linux 사례 (MX 21)


?pie  # graphics 패키지의 pie 도움말 보기

require(grDevices)
pie(rep(1, 24), col = rainbow(24), radius = 0.9)

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
names(pie.sales) <- c("Blueberry", "Cherry",
    "Apple", "Boston Cream", "Other", "Vanilla Cream")
pie(pie.sales) # default colours
pie(pie.sales, col = c("purple", "violetred1", "green3",
                       "cornsilk", "cyan", "white"))
pie(pie.sales, col = gray(seq(0.4, 1.0, length.out = 6)))
pie(pie.sales, density = 10, angle = 15 + 10 * 1:6)
pie(pie.sales, clockwise = TRUE, main = "pie(*, clockwise = TRUE)")
segments(0, 0, 0, 1, col = "red", lwd = 2)
text(0, 1, "init.angle = 90", col = "red")

n <- 200
pie(rep(1, n), labels = "", col = rainbow(n), border = NA,
    main = "pie(*, labels=\"\", col=rainbow(n), border=NA,..")

## Another case showing pie() is rather fun than science:
## (original by FinalBackwardsGlance on http://imgur.com/gallery/wWrpU4X)
pie(c(Sky = 78, "Sunny side of pyramid" = 17, "Shady side of pyramid" = 5),
    init.angle = 315, col = c("deepskyblue", "yellow", "yellow3"), border = FALSE)

그래프 > 막대 그래프...
Graphs > Bar graph...

Linux 사례 (MX 21)

carData 패키지에 있는 Prestige 데이터셋을 활성화시키자. Prestige 데이터셋에는 요인형 변수가 한개 있다. type 변수인데 자동으로 선택된다. 만약 두개 이상이라면, 그 아래 있는 <집단 기준으로 그리기...>에서 추가적인 요인형변수를 선택할 수 있다.

Linux 사례 (MX 21)

<선택기능> 창에 있는 <축 크기조정>에서 '백분율'을 선택하자. <색깔 선택>에서 '색깔 팔레트에서'를 선택하자. 그리고 <그림 이름표>에 그래프를 이해하는 데 효과적인 이름표와 제목을 입력하자.

Linux 사례 (MX 21)

with(Prestige, Barplot(type, xlab="type (직업유형)", ylab="Percent", 
  main="1971년 캐나다 직업군에서 직업유형별 막대그래프", 
  col=palette()[2], scale="percent", label.bars=TRUE))

아래와 같이 그래픽장치 창에 막대 그래프가 출력된다.

Linux 사례 (MX 21)


?Barplot  # RcmdrMisc 패키지의 Barplot 도움말 보기

with(Mroz, {
  Barplot(wc)
  Barplot(wc, col="lightblue", label.bars=TRUE)
  Barplot(wc, by=hc)
  Barplot(wc, by=hc, scale="percent", label.bars=TRUE)
  Barplot(wc, by=hc, style="parallel", 
    scale="percent", legend.pos="center")
})

+ Recent posts