통계 > 분산 > Bartlett의 검정...

Statistics > Variances > Bartlett's test...

Linux 사례 (MX 21)

carData 패키지에서 제공하는 Prestige 데이터셋을 활성화 시키자. Prestige 데이터셋에는 type 이라는 세개의 수준을 가진 요인형 변수가 있다. 그 수준 이름은 bc, prof, wc 이다. 직업유형(type)별로 사회적인 권위가 다른지를 확인하는 문제의식이 있다고 하자. 집단별(직업유형, type)로 직업의 사회적 권위(prestige)에 대한 분산의 차이가 있는지를 통계적으로 살펴본다.

Linux 사례 (MX 21)

Tapply(prestige ~ type, var, na.action=na.omit, data=Prestige) # variances by group
bartlett.test(prestige ~ type, data=Prestige)

Linux 사례 (MX 21)

'Statistics > Variances' 카테고리의 다른 글

3. Levene's test...  (0) 2022.03.08
1. Two variances F-test...  (0) 2022.03.07

통계 > 평균 > 일원 분산 분석...

Statistics > Means > One-way ANOVA...

Linux 사례 (MX 21)

datasets 패키지에 있는 sleep 데이터셋을 활용해보자.

https://rcmdr.tistory.com/132

 

sleep

Datasets > sleep data(sleep, package="datasets") summary(sleep) str(sleep) 데이터셋의 내부는 다음과 같다:

rcmdr.kr

<집단 (하나 선택)>에 요인형 변수 group을, <반응 변수 (하나 선택)>에 수치형 변수 extra를 선택한다. 통계 > 분산 > 이-분산 F-검정을 통하여 비교되는 두 집단의 extra 변수의 사례 분포는 등분산임을 알고 있는 상황이다.

https://rcmdr.tistory.com/136

 

1. Two variances F-test...

통계 > 분산 > 이-분산 F-검정... Statistics > Variances > Two variances F-test... datasets 패키지에 포함된 sleep 데이터셋을 활용해보자. https://rcmdr.tistory.com/132 sleep data(sleep, package="datas..

rcmdr.kr

Linux 사례 (MX 21)

AnovaModel.1 <- aov(extra ~ group, data=sleep)
summary(AnovaModel.1)
with(sleep, numSummary(extra, groups=group, statistics=c("mean", "sd")))

일원 분산 분석의 명령문 작성과 분석 결과는 아래와 같다.

Linux 사례 (MX 21)

추가로  carData 패키지의 Prestige 데이터셋을 이용하여 일원 분산 분석을 연습해보자. Prestige 데이터셋에는 type 이라는 요인형 변수가 있다. 그러나 앞서 연습한 sleep 데이터셋의 group 변수처럼 요인 수준이 두개가 아니라 요인의 수준이 셋이다. 직업의 사회적 권위에 대한 직업 유형별 (bc, prof, wc) 평균의 차이가 있는가를 점검한다.

Linux 사례 (MX 21)

AnovaModel.3 <- aov(prestige ~ type, data=Prestige)
summary(AnovaModel.3)
with(Prestige, numSummary(prestige, groups=type, statistics=c("mean", "sd")))

직업유형 (bc, prof, wc)에 따른 직업의 사회적 권위는, 각 유형별 평균을 비교할 때, 차이가 있다는 결과를 얻는다.

Linux 사례 (MX 21)


?anova  # stats 패키지의 anova 도움말 보기

'Statistics > Means' 카테고리의 다른 글

6. One-factor repeated-measures ANOVA/ANCOVA...  (0) 2022.06.23
5. Multi-way ANOVA...  (0) 2022.03.13
3. Paired t-test...  (0) 2022.03.07
2. Independent samples t-test...  (0) 2022.03.07
1. Single-sample t-test...  (0) 2022.03.07

통계 > 분산 > 이-분산 F-검정...

Statistics > Variances > Two variances F-test...

Linux 사례 (MX 21)

datasets 패키지에 포함된 sleep 데이터셋을 활용해보자.

https://rcmdr.tistory.com/132

 

sleep

Datasets > sleep data(sleep, package="datasets") summary(sleep) str(sleep) 데이터셋의 내부는 다음과 같다:

rcmdr.kr

<이-분산 F-검정> 메뉴창에서 요인형 변수 group을 <집단 (하나 선택)>에, 수치형 변수 extra를 <반응 변수 (하나 선택)>으로 결정하자. Two variances F-test (이-분산 F-검정)은 두 개의 집단 비교로 반응 변수의 분산을 점검하는 기법이다.

Linux 사례 (MX 21)

Tapply(extra ~ group, var, na.action=na.omit, data=sleep) # variances by group
var.test(extra ~ group, alternative='two.sided', conf.level=.95, data=sleep)

alternative 이후 선택 사항들은 기본 선택을 사용하였다. 변화를 준 것은 없다. 따라서 아래의 명령문과 같은 의미이기도 하다.

var.test(extra ~ group, data=sleep)

sleep 데이터셋에 있는 extra 변수의 요인 수준 (group1, group2)별 분산은 차이가 있다고 통계적으로 말하기 어렵다는 결론을 얻는다. 줄여서 거칠게 말하면, 두 분산의 차이가 없다고 할 수 있다.

Linux 사례 (MX 21)

 

'Statistics > Variances' 카테고리의 다른 글

3. Levene's test...  (0) 2022.03.08
2. Bartlett's test  (0) 2022.03.08

+ Recent posts