먼저 '통계 > 비모수 검정 > 쌍-표본 Wilcoxon 검정...'을 살펴보는 것을 추천한다. depression 이라는 데이터셋을 만들고, 변수 first, second, change를 만들었다. change는 second와 first의 차이에 관련 사례 값을 갖는다.
'통계 > 비모수 검정 > 일-표본 Wilcoxon 검정...'은 depression 데이터셋의 change 변수처럼 두 개 변수의 차이를 갖는 (또는 차이가 계산된) 변수를 기준값과 비교하여 차이 검정을 하는 기법이다. 때로는 특정 변수와 기준 값의 비교를 통하여 검정을 하기도 한다.
데이터셋과 변수에 대한 의미적 판단이 깊은 경우 <대립 가설>의 선택을 다양하게 결정할 수 있다. 아래 화면에서 'mu < 0'은 change가 귀무(영) 가설, mu=0.0 일 때 depression 의 변화가 작아졌음을 확인하는 것으로 이해할 수 있다.
'통계 > 비모수 검정 > 이-표본 Wilcoxon 검정...' 기능을 이용하기 위해서 데이터셋을 선택하고, 정비해보자. datasets 패키지에 있는 airquality 데이터셋을 선택하고, 그 안에 있는 변수 Month 사례 값들 중에서 5월, 8월에 해당하는 5, 8을 선택한 하위 데이터셋을 만들고, airquality.sub라 이름 붙이자. 그리고, 5, 8을 요인화 시켜서, May, August라고 수준을 만들자.
이 데이터셋을 만드는 이유는 friedman.test()라는 함수의 예제 연습에 포함되어있기 때문이다. RoundingTimes 데이터셋은 아래와 같은 내부 구성을 갖는다:
RoungdingTimes 라는 데이터셋을 만들고, 화면 맨 위에 있는 <Friedman 순위-합 검정...> 기능을 선택하면 추가적인 선택 메뉴 창으로 넘어간다. <Friedman 순위 합 검정> 창에서 <반복-측정 변수 (두개 이상 선택)>에서 세개의 변수를 모두 선택하고, 예(OK) 버튼을 누른다.
Statistics > Dimensional Analysis > Cluster Analysis > Add hierarchical clustering to data set...
' 통계 > 차원 분석 > 군집 분석 > 위계 군집 분석...' 기능을 진행했다고 하자. 그 다음에 <위계군집화를 데이터 셋에 추가하기...>를 이용할 수 있다. <군집의 수:>를 3으로 변경하자. 그리고 예(OK) 버튼을 누르면, hclus.label라는 변수가 USArrests 데이터셋에 추가된다.
R Commander 상단에 있는 <데이터셋 보기> 버튼을 눌러보자. 아래와 같이 데이터셋의 내부 구성이 보일 것이다. hclus.label 변수가 추가되어 있음을 확인할 수 있다:
<선택기능> 창에서, 군집의 수를 3개, 초기값의 수를 5번으로, 최대 반복 횟수를 5회로 정해보자. 데이터셋에 추가될 변수 이름이 KMeans가 될 것이다. 아래 있는 선택사항에서 데이터셋에 군집 할당하기를 선택한다.
위 화면에서 선택된 군집 행렬도(Bi-plot)이 아래와 같이 생산된다.
USArrests 데이터셋에 변수 KMeans가 추가될 것이다. R Commander 상단에 있는 <데이터셋 보기> 버튼을 눌러보자. KMeans 변수는 요인형으로 1, 2, 3 이라는 세개의 군집을 표시한다.
아래 화면은 다소 복잡해보일 것이다. 그러나 객체 .cluster가 만들어졌으며, 그 객체안에 있는 $size, $withinss, $tot.withinss, $betweenss 등의 정보를 차례를 보여준다고 생각하자. 그리고 biplot을 생산하고, USArrests 데이터셋에 KMeans라는 변수를 추가하는 것이다.
요인형 변수를 두개 이상 가지고 있는 데이터셋이 활성화되어 있다면, '통계 > 비율 > 이-표본 비율 검정..' 메뉴 기능을 이용할 수 있다. carData 패키지에 있는 Chile 데이터셋을 활용해서 연습해보자. 먼저, '데이터 > 패키지에 있는 데이터 > 첨부된 패키지에서 데이터셋 읽기...' 메뉴 기능을 통하여 Chile 데이터셋을 활성화시키자. R Commander 상단에 'Chile'라는 데이터셋이 활성화되었는지 확인하자.
local({
.Table <- xtabs(~ vote.f , data= Chile )
cat("\nFrequency counts (test is for first level):\n")
print(.Table)
prop.test(rbind(.Table), alternative='two.sided', p=.5, conf.level=.95, correct=FALSE)
})
출력창에 나오는 결과는 아래와 같다:
?prop.test # stats 패키지의 prop.test 도움말 보기
heads <- rbinom(1, size = 100, prob = .5)
prop.test(heads, 100) # continuity correction TRUE by default
prop.test(heads, 100, correct = FALSE)
## Data from Fleiss (1981), p. 139.
## H0: The null hypothesis is that the four populations from which
## the patients were drawn have the same true proportion of smokers.
## A: The alternative is that this proportion is different in at
## least one of the populations.
smokers <- c( 83, 90, 129, 70 )
patients <- c( 86, 93, 136, 82 )
prop.test(smokers, patients)